Suhteet | matematiikka

Matematiikassa sana "suhteet" tarkoittaa kahta suhdelukua, jotka on asetettu yhtälöksi. Esimerkkejä suhteista ovat:

·         50100 ⁄=1 ⁄ ⁄2

·         75100 ⁄=3 ⁄ ⁄4

·         +x 100 =3 4 , jossa x = 75.

Algebrassa mittasuhteita voidaan käyttää monien tavallisten lukujen muuttamiseen liittyvien ongelmien ratkaisemiseen. Jos esimerkiksi bensiinin (bensiinin) hinta nousisi 35 senttiä, eli 3,50 dollarista 3,85 dollariin, 40 dollarin hinta nousisi 40 dollarilla, suhde olisi seuraava:

·         +x 3.85 = +$40 ⁄ ⁄.3.50

Ratkaisu on yksinkertainen:

·         x = 40/3,50 x 3,85 = 44,00 dollaria eli 4 dollaria enemmän, kun hinta on 0,35 dollaria korkeampi.

Monet muutkin tavalliset laskutoimitukset voidaan ratkaista käyttämällä suhteita lukujen välisten suhteiden osoittamiseksi.

Tilastotieteessä osuus on luku, joka mittaa, kuinka suuri osa otoksesta tai perusjoukosta sisältää tietyn ominaisuuden. Sitä voidaan pitää prosenttilukuna. Otoksen osuuden esittämiseen voidaan käyttää kirjaimia {\displaystyle p} . Perusjoukon osuuden esittämiseen voidaan käyttää kirjainta {\displaystyle \pi }




 

Suhteellisuusvakio

Suhteellisuusvakio on luku, jota käytetään muunnettaessa yhdessä järjestelmässä tehty mittaus vastaavaksi mittaukseksi toisessa järjestelmässä. Esimerkiksi ihmiset, jotka tuntevat Yhdysvalloissa käytetyn perinteisen yksikköjärjestelmän (punnat, jalat, tuumat jne.), voivat joutua selvittämään näiden mittojen metrisen vastineen grammoina ja metreinä. Näiden laskutoimitusten tekemiseen tarvitaan joitakin suhteellisuusvakioita.

Yksi tapa kirjoittaa kaava, joka osoittaa suhteellisuusvakion K käytön, on:

KX = Y

Ihmiset voivat esimerkiksi tietää, että heillä on 100 munaa, ja haluavat tietää, kuinka monta tusinaa munia heillä on. Suhteellisuusvakio K on tällöin 1 tusina/ 12 munaa.

100 kananmunaa × (1 tusina / 12 kananmunaa) = 8 tusinaa kananmunaa + 4 kananmunaa.

Yleisesti ottaen, jos kahdelle funktiolle f(x) ja {\displaystyle g(x)} on olemassa vakio {\displaystyle K} siten, että {\displaystyle f(x)=Kg(x)} , sanotaan, että " f llinen g {\displaystyle g} kanssa. g". Symboleissa tämä voidaan kirjoittaa seuraavasti: g ( x ) {\displaystyle f(x)\propto g(x)}{\displaystyle f(x)\propto g(x)} .

Esimerkkejä suhteellisuusvakioista

·         Planckin vakio ilmaisee tietyn taajuuden fotonin energian yleisesti käytettynä energian yksikkönä, jouleina.
 

Aiheeseen liittyvät sivut

  • Suhteellisuus
 

Kysymyksiä ja vastauksia

K: Mitä sana "suhteet" tarkoittaa matematiikassa?


V: Matematiikassa sana "suhteet" tarkoittaa kahta yhtälöön laitettua suhdelukua.

K: Miten suhteita voidaan käyttää tavallisten ongelmien ratkaisemiseen?


V: Suhteitten avulla voidaan ratkaista monia yleisiä ongelmia, jotka liittyvät lukujen muuttamiseen. Jos esimerkiksi jonkin ostoksen hinta nousee, suhteita voidaan käyttää laskemaan, kuinka paljon enemmän rahaa tarvitaan kyseiseen ostokseen.

K: Mikä on suhdeluku tilastotieteessä?


V: Tilastotieteessä suhdeluku on luku, joka mittaa sitä, kuinka paljon tiettyä ominaisuutta on otoksessa tai perusjoukossa, ja sitä voidaan ajatella prosenttilukuna.

K: Miten otoksen osuudet esitetään?


V: Otososuudet esitetään käyttämällä p-kirjainta.

K: Miten populaation osuudet esitetään?


V: Populaation osuudet esitetään kreikkalaisella kirjaimella ً (pi).

K: Mikä on esimerkki siitä, miten suhteita voidaan käyttää ongelman ratkaisemiseen?


V: Esimerkkinä 40 dollaria maksavan bensiinin (bensiinin) oston korotuksesta, jos hinta nousisi 35 senttiä 3,50 dollarista 3,85 dollariin, niin suhde olisi +x⁄3,85 = +40⁄3,50 dollaria, ja ratkaisu olisi yksinkertaisesti x = 40/3,50 x 3,85 = 44,00 dollaria eli 4 dollaria enemmän, kun 0,35 dollaria korkeampi .

Kysymys: Onko olemassa muita laskutoimituksia, jotka voidaan ratkaista suhteiden avulla?


V: Kyllä, monet muut yleiset laskutoimitukset voidaan ratkaista käyttämällä suhteita osoittamaan lukujen välisiä suhteita.

AlegsaOnline.com - 2020 / 2023 - License CC3